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USA Mathematical Talent Search

PROBLEMS / SOLUTIONS / COMMENTS
Round 1 - Year 12 - Academic Year 2000-2001

Gene A. Berg, Editor

1/1/12. Determine the smallest five-digit positive integerN such that 2N is also a five-digit inte-
ger and all ten digits from 0 to 9 are found inN and 2N.

Solution 1 by Alex Lang (8/WI):
First step: Assign variables to the digits.N is assigned the variablesABCDEand 2N is assigned
the variablesFGHIJ.

Second step: Solve forN and 2N. A cannot equal 0 sinceN would then be considered a 4 digit
number and to satisfy the conditionsN needs to be a 5 digit number.  The next smallest numb
thatA could equal is 1. Therefore,A will be assumed equal to 1 until all possible solutions withA
= 1 have been proved false.F = 2 since 2A = 2(1) = 2. B will be assumed equal to 3 since that i
the smallest number not already used.C will be assumed equal to 4. ThenG = 6 since 2B = 2(3)
= 6. D will be assumed to equal 5. H = 9 since 2C + carry over from 2D = 2(4) + 1 = 9. But, if E
= 8, 2(D) + carry over = 2(5) + 1 = 11, soI = 1.  That is a contradiction becauseA also equals 1
and each number is supposed to be used once. Also, ifE = 0, 2E would also equal 0, and another
contradiction would occur. Therefore, .D will then be assumed equal to 7. That is becaus
G already equals 6, therefore 7 is the next smallest number.  ThenH = 9 since 2C + carryover =
2(4) + 1 = 9.  ThenE would have to equal 8 because ifE = 0 then 2E would also equal 0 and a
contradiction would arise.  But, ifE = 8 then 2E = 2(8) = 16 and thereforeJ = 6, another contra-
diction occurs sinceG already equals 6.  Therefore, .D will then be assumed to equal 8.
ThenH = 9 since 2C + carry over = 2(4) + 1 = 9.E will then be assumed to equal 5.  Then 2E =
2(5) = 10, butJ would only equal the last digit which is 0,I would then equal 2D + carry over =
2(8) + 1 = 17, soI = 7.  That solution satisfies the specified conditions.

Therefore,N = 13,485 and 2N = 26,970.

Solution 2 by Valerie Lee (10/NY):
N is comprised of digitsABCDE, while 2N is FGHIJ.

1. LetA = 1.
2. If A is 1, then  becauseF would equal 2, and  because ifC < 5, thenG = 0 and
C = 5-9,  thenG = 1.  LetB = 3.
3.  0-3, so letC = 4.

 Thus far we have .

4. a) 0-4, so letD = 5, so we would have  and there would b

no way to concludeJ = 7 or 8, so .

b) LetD = 6, so , but 6 is used twice, so .

D 5≠

D 7≠

B 2≠ B 2≠

C ≠
134DE 2• 26 8 9,[ ]IJ=

D ≠ 1345E 2• 269 0 1,[ ]J=

D 5≠
1346E 2• 269 2 3,[ ]J= D 6≠
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c) LetD = 7, so , but there is no answer forE so thatJ = 0 or 8, so

.

d) LetD = 8, so . NowE = 0 or 5. E = 0 gives contradiction. So

let E = 5. .  This uses all ten digits.
Answer: N = 13485.

Solution 3 by Paul Wrayno (11/NC): Let N = ABCDE, 2N = FGHIJ.
To be smallest, ideallyA = 1, andF = 2,B = 3,G = 6, if it is possible to createN and 2N with these
values, because they are the absolute least values for the first two digits.  The lowest rema
digit is 4, so ideallyC = 4, causingH = 9 because the remaining digits guarantee a carry from

.  This leaves 0, 5, 7, and 8.  Since 0 can only be achieved by  without a carry,E = 5

andJ = 0. , which fits the other four digits, soD = 8 andJ = 7.  This is the only
(N, 2N) pair that has the ideal first three digits, soN = 13485 is the smallest.
Answer: N = 13485.

Editor’s Comment: We are indebted to Dr. Béla Bajnok of Gettysburg College for posing th
problem and for his continuing assistance with USAMTS.  Dr. Bajnok claims the next small
solutions (after 13485) are 13548, 13845, and 14538.  He notes they all use the same five 

2/1/12. It was recently shown that is not a prime number. Find the four rightmost d
its of this number.

Solution 1 by Christopher Lyons (12/CA): This problem is equivalent to asking, “What is the

remainder when  is divided by 10,000?”  Since we are only concerned with the rem
der, I chose to use the mathematical tool that is all about remainders: the congruence. My st
in attacking this problem is to use the rules of congruences to build up from

 to , and to add 1 to get

.

We start by evaluating the congruence of  modulo 10,000.  In fact, throughout the descr
of this problem, all congruences will be modulo 10,000.

Since we can multiply congruences just like equations, we will multiply this congruence by its
But first we must show an identity that will be useful for the rest of the problem:

Thus, when we multiply  by , we get .  For example .  We can

1347E 2• 269 4 5,[ ]J=

D 7≠
1348E 2• 269 6 7,[ ]J=

13485 2• 26970=

2 D• 2 5•
8 2 1+• 17=
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apply this identity repeatedly with congruences to get all the way from  to .  Let us w
out the first few steps:

We continue this process, obtaining the congruences of , , ..., .  The following is
table of all these congruences.  (I used an eight-digit hand held calculator to find these valu
since this was the easiest way for me.)

Now that we have obtained this last congruence, we may add it to another congruence to pr
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2
24
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2
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× 4 4× 16= = =
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256=
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× 256 256× 65536 5536 mod 10,000( )≡= = =

2
2

4

5536≡

2
2
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7296≡ 2
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2896≡ 2
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6496≡

2
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1616≡ 2
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6816≡ 2
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8016≡
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7

1456≡ 2
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6256≡
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8

9936≡ 2
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16

6736≡ 2
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24

7536≡
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the desired result:

.

This final congruence is equivalent to writing

whereK is some positive integer (a large one, probably!).  Looking at the right side of this e
tion, we see that the multiple of 10,000 will have (at least) four trailing zeros.  When we add
multiple and its four trailing zeros to 7537, we get a number whose four rightmost digits are 7

The four rightmost digits of  are 7537.

Solution 2 by Aleksandr Kivenson (10/NY):To begin, it is necessary to declare that to obtai
the four rightmost digits of a product, only the four rightmost digits of the factors need to be
tiplied (for example, to get the four rightmost digits of the product of 12,345 and 67,890, all
have to do is multiply 2,345 by 7,890 and take the four rightmost terms of the result).  Sinc
approach to this problem is to use known large numbers and multiply their four rightmost dig
get the answer, I will use this method.

Since when you multiply numbers which have the same base but different powers you add

powers (for example ), it would be easy to find numbers whose rightmost fo
digits I should multiply by looking for large numbers expressed as powers of 2, finding the o

whose powers add up to , and then multiplying the rightmost 4 digits of these numbers 

the rightmost four digits of .

Conveniently, such a list of known powers of two exists in the form of Mersenne prime numb

These are a special type of prime numbers that are expressed as .  Many such prime
bers are known and I used a web page

http://www.isthe.com/chongo/tech/math/prime/mersenne.html
to find numerical values for these primes.  I chose the powers of 2 whose powers added up

exponent .  I ignored the -1 because when I chose the powers I would use 
obtained the last four digits of their numerical value, added one to each, and then multiplied

out to get the last four digits of .  The powers which I used and their numerical value ar
follows:
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1+ 7536 1 7537 mod 10,000( )≡+≡

2
2
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1+ 10000 K 7537+×=
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=
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2
24

16777216=

2
2
24
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From multiplying the last four digits of the numerical value of each power, I obtained a num

whose last four digits were 7,536.  This means the last four digits of  are 7,536.

Therefore, the last four digits of  are 7,537.

Solution 3 by Zhihao Liu (11/IL):
Answer:7537
Proof: [See the Editor’s Comment below for a quick review of some of these terms and conce

Note that .  By Euler’s Theorem,

Power of 2 Last four digits of that power

4096

8128

8128

1472

8672

8448

8448

5712

1152

1152

1152

1152

1152

Sums of powers: 16,777,216 Last four digits of above values: 7,536

2
12

2
607

2
607

2
19937

2
44497

2
216091

2
216091

2
1398269

2
2976221

2
2976221

2
2976221

2
2976221

2
2976221

2
2
24

2
2
24

1+

2
24

2
9( )

2
64( ) 144 64×≡≡ 9216 216 mod 500( )≡=
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, if .    Since , Euler’s Theorem says

, if . It follows that . By doubling

for a while we find , and so

.  Since 24 and 54 are relatively

prime, by the Chinese Remainder Theorem there is a uniquen,  that sat-

isfies both , and .  Note that  satisfies both of these

congruences, and .  Therefore the last four digits of  are7537.

Solution 4 by Jacob Licht (11/CT):

Euler’s Theorem states: If , then .  Ifa = 2 andm = 625,

.  By the Division Algorithm q, r

 and .  [ Read: By the Division Algorithm there existq andr, ele-

ments of the integersZ, such that  and . ]  Since

, . Sor = 216, and

.  Note that 28 = 256, so

.

So, .

Thus , and since  divides  so .  We also hav

that and , so . Now by the Chinese

Remainder Theorem .

So the four rightmost digits of  are 7537.

Editor’s Comment:   In what he described as “the deepest computation in history whose re
was a simple yes/no answer,” Richard Crandall of the Center for Advanced Computation at
College, together with Ernest Myer, formerly of Case Western Reserve University, and Jaso

adopoulos of the University of Maryland, have verified that the 24th Fermat number,
not a prime number.  For more information about the 24th Fermat number, visit the web sit
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www.perfsci.com/.  This problem was created by Gene Berg of NSA.

The solutions to these problems give us an opportunity to briefly introduceEuler’s function
, Euler’s generalization of Fermat’s Theorem,and the Chinese Remainder Theroem.  Our

goal is to introduce some of the notation and terminology of this subject to young mathemati
seeing this for the first time, and possibly help them understand the proofs.  For more deta
(a)An Introduction to the Theory of Numbers by G. H. Hardy and E. M. Wright, published by
Clarendon Press, or (b)The Art of Problem Solving, Volumes 1 and 2, by Richard Rusczyk and
Sandor Lehoczky, published by Greater Testing Concepts, P.O. Box 5014, New York, NY 1
5014.

For a brief discussion ofCongruences, Fermat’s Theorem,and  the Extended Euclidean Algo-
rithm (EEA) for finding Greatest Common Divisorssee the Solutions to Problem 1/2/11 from Yea
11 of the USAMTS.

Definition (Euler’s function ):  For an integerm, let  denote the number of positive
integers less thanm and relatively prime tom.  For example, considerm = 20: there are eight pos
itive integers less than 20 which are relatively prime to 20, namely 1, 3, 7, 9, 11, 13, 17, and 1

.  Since  is prime, all sixteen positive integers less than 17 are prime to 1

and .  If p is prime, then .  Ifm andn are relatively prime inte-

gers, then .  For example:

Theorem (Euler’s generalization of Fermat’s Theorem):  If a andm are integers with Greatest
Common Divisor GCD(a, m) = 1, then

.

For example, ifa is any integer relatively prime to 20 [i.e. ], then

.

Chinese Remainder Theroem:  If  are positive integers that are pairwise relativel

prime [ that is, GCD(mi, mj) = 1 for ], then for any integers the system

of congruences , , has a simultaneous solutiony that is uniquely

determined modulo . [A similar theorem applies to polynomials.]

As an example, find an integerc with  such that

,

,

φ m( )

φ m( ) φ m( )

φ 20( ) 8= m 17=

φ 17( ) 16= φ p
k( ) p

k
1 1

p
---– 

 =

φ mn( ) φ m( )φ n( )=

φ 20( ) φ 4 5×( ) φ 4( ) φ 5( )× 4 1 1
2
---– 

  4[ ]× 8= = = =

a
φ m( )

1 modm( )≡

a 1 3 7 9 11 13 17 19, , , , , , ,{ }∈

a
8

1 mod 20( )≡

m1 m2 … mk, , ,

1 i j k≤<≤ a1 a2 … ak, , ,

y ai mod mi( )≡ i 1 2 … k, , ,=

m m1m2
… mk=

0 c 3 7 11 13⋅ ⋅ ⋅<≤ 3003=

c 2 mod 3( )≡
c 4 mod 7( )≡
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Solution:We do this in three steps, solving for the first two equations, then for the first three e
tions, and finally for all four equations.  In each step we use the Extended Euclidean Algori
(EEA) (for examples of this algorithm in use, see the Solution to Problem 2/1/11 of Year 11

Step 1.  Findx satisfying  and .

GCD(m1, m2) = 1  so by the EEA there are integersf1 andf2 so that

.  The EEA finds  and .  Now choose

.

Observex satisfies the requirements of step 1.

Step 2.  Findy satisfying , ,  and

.  GCD(m1m2, m3) = 1  so by the EEA there are integersg1 and g2

so that .  Now choose

.

where
.

Observe  satisfies step 2.

Step 3.  Findc satisfying , ,

 and .  GCD(m1m2m3, m4) = 1  so by the EEA there

are integersh1 and h2 so that

.  Now choose

.

where
 and .

Observe , and reduced to

 satisfies step 3 and the original requirement.

3/1/12. Determine the integersa, b, c, d, ande for which

.

Solution 1 by Christopher Church (10/KY): This problem essentially asks us to factor

 into a quadratic and a cubic polynomial.  Theoretically, a TI-89 graphing calcul

c 6 mod 11( )≡
c 8 mod 13( )≡

x 2 mod 3( ) a1 modm1( )≡≡ x 4 mod 7( ) a2 modm2( )≡ ≡

1 f 1m1 f 2m2+ f 1 3⋅ f 2 7⋅+≡ ≡ f 1 5= f 2 2–=

x a1 a2 a1–( ) f 1 m1⋅ ⋅+ 2 4 2–( ) 5 3⋅ ⋅+ 32= = =

y 2 mod 3( ) a1 modm1( )≡≡ y 4 mod 7( ) a2 modm2( )≡ ≡

y 6 mod 11( ) a3 modm3( )≡ ≡

1 g1m1m2 g2m3+ g1 21⋅ g2 11⋅+ 1–( ) 21 2 11⋅+⋅≡ ≡ ≡

y a1 a2 a1–( ) f 1 m1 a3 x–( ) g1 m1 m2⋅ ⋅ ⋅+⋅ ⋅+ 32 6 32–( ) 1–( ) 3( ) 7( )+ 578= = =

x a1 a2 a1–( ) f 1 m1⋅ ⋅+=

y 578=

c 2 mod 3( ) a1 modm1( )≡≡ c 4 mod 7( ) a2 modm2( )≡ ≡

c 6 mod 11( ) a3 modm3( )≡ ≡ c 8 mod 13( )≡

1 h1m1m2m3 h2m4+ h1 3 7 11⋅ ⋅ ⋅ h2 13⋅+ 4 231 71–( ) 13⋅+⋅≡ ≡ ≡

z a1 a2 a1–( ) f 1 m1 a3 x–( ) g1 m1 m2 a4 y–( ) h1 m1 m2 m3⋅ ⋅ ⋅ ⋅+⋅ ⋅ ⋅+⋅ ⋅+=

y a4 y–( ) h1 m1 m2 m3⋅ ⋅ ⋅ ⋅+=

x a1 a2 a1–( ) f 1 m1⋅ ⋅+= y a1 a2 a1–( ) f 1 m1 a3 x–( ) g1 m1 m2⋅ ⋅ ⋅+⋅ ⋅+=

z 578 8 578–( ) 4 3 7 11⋅ ⋅ ⋅ ⋅+ 526680–= =

c 2426 z mod 3003( )≡=

x
2

ax b+ +( ) x
3

cx
2

dx e+ + +( ) x
5

9x– 27–=

x
5

9x– 27–
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could factor this polynomial. I, however, do not have access to the TI-89. However, I did use
TI-85 to calculate the roots of the polynomial. My calculator returned the five values shown

The last one, based on my knowledge of the quadratic formula, was .  This I could

transfer into a polynomial of degree two. The result, using the fact thatx equals the values above

is .  Using long division of polynomials, I found that

.

Thus the integers that the problem asked for are found here.  They are , ,

, , and .

Solution 2 by Laura Pruitt (11/MA): Multiply out the left side of the equation to get

Comparing coefficients in this new equation, it is easy to find equations relating the variablesa, b,
c, d, ande:
1.

2.

3.

4.

5.

Initial observations on these equations:
(i) Simple substitutions: ,  or ,  or .
(ii) Since all variables are integers, there are only eight possibilities for

: .

This leaves us with three equations (2, 3, and 4) and one variable (d) that we have not used yet.
Substitute  fora and solve 2, 3, and 4 ford in terms ofa, b, c, ande:

2.      ->

3.    ->

4.       ->

Therefore .

2.1541 4229 1.9998± i 1.5 0.8660i˙±–,,

3
2
---– 3

2
--- i±

x
2

3x 3+ +

x
2

3x 3+ +( ) x
3

3x
2

– 6x 9–+( ) x
5

9x– 27–=

a 3= b 3=

c 3–= d 6= e 9–=

x
5

a c+( )x
4

ac b d+ +( )x
3

ad bc e+ +( )x
2

ae bd+( )x be+ + + + + x
5

9x– 27–=

a c+ 0=

ac b d+ + 0=

ad bc e+ + 0=

ae bd+ 9–=

be 27–=

a c–= c a–= b 27 e⁄–= e 27 b⁄–=

b e( , ) 1 27–( , ) 1– 27( , ) 27 1–( , ) 27– 1( , ) 3 9–( , ) 3– 9( , ) 9 3–( , ) 9– 3( , ), , , , , , ,

c–

c
2

– b d+ + 0= d c
2

b–=

cd– bc e+ + 0= d bc e+( ) c⁄=

ce– bd+ 9–= d ce 9–( ) b⁄=

c
2

b– bc e+( ) c⁄ ce 9–( ) b⁄= =
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In pairs, solve forc in terms ofb ande:
Comb. 1 (use 2 and 3) Comb. 2 (use 2 and 4) Comb. 3 (use 3 and 4)

discard: cubic

In order forc to be an integer, which it must be, the discriminant must be a perfect square.  
the eight possible solutions for :

For Comb. 2:

For Comb. 3:

Check  in the full quadratics from Comb. 2 and Comb. 3.  It checks.

If , then  (the answers to the quadratics), but looking at equation 

when solved ford (  ), we see that  since division by 0 is undefined.  The

fore  and .

It is now simple to solve ford; simply substitute the values ofa, b, c, ande into any of the original
equations containingd to yield .

Solution:
The desired factorization is

.

Solution 3 by Sarah Emerson (12/WA):Expand the equation to obtain:

Therefore

(1)

(2a)

(3a)

(4)

(5)

c
2

b– bc e+( ) c⁄= c
2

b– ce 9–( ) b⁄= bc e+( ) c⁄ ce 9–( ) b⁄=

c
3

2bc– e– 0= bc
2

ec– 9 b
2

–( )+ 0= ec
2

b
2

9+( )c– be– 0=

c
e e

2
4b 9 b

2
–( )–±[ ]

2b
-------------------------------------------------------= c

b
2

9 b
2

9+( )
2

4be
2

+±+

2e
-----------------------------------------------------------------------=

b e( , )

b e( , ) 9 3–( , ) 3 9–( , ){ , }∈
b e( , ) 3 9–( , )=

b e( , ) 3 9–( , )=

b e( , ) 3 9–( , )= c 0 3–,{ }∈
d bc e+( ) c⁄= c 0≠

c 3–= a c– 3= =

d 6=

a b c d e, , , ,( ) 3 3 3 6 9–, ,–, ,( )=

x
2

3x 3+ +( ) x
3

3x
2

– 6x 9–+( ) x
5

9x– 27–=

x
5

a c+( )x
4

ac b d+ +( )x
3

ad bc e+ +( )x
2

ae bd+( )x be+ + + + + x
5

9x– 27–=

a c+ 0= ⇒ c a–=

d ac b+ + 0= ⇒ d a
2

– b+ 0=

e ad bc+ + 0= ⇒ e ad ba–+ 0=

ae bd+ 9–=

be 27–=
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To solve, try all possible values of b and e, plugging the values into the other equations to d
mine if they work.

Editor’s Comment: We thank our Problem Editor, Dr. George Berzsenyi, for this problem.  I

stems from a recent article, “The Factorization of  and Fibonacci Numbers,” pub
lished in the November 1999 issue of theFibonacci Quarterly.

4/1/12. A sequence of real numbers has the property that

all nonnegative integersi and j with , for all nonnegative integersi, and

.    Find the three numberss0, s1, ands2.

Solution 1 by Jennifer Dawson (11/AK):

Answer: , , and .

Solution:

(4)

(3)

a does not exist.

(4)

(3)

  or it works!
Solution.

b 1=

e 27–=

27a– d+ 9–=

27– ad a–+ 0=

d 9– 27a–=

27– a 9– 27a–( ) a–+ 0=

27– 9a– 27a
2

– a– 0=

27a
2

– 10a– 27– 0=

a
10 100 4 27–( ) 27–( )–±

2 27–( )
---------------------------------------------------------------=

b 3=

e 9–=

9a– 3d+ 9–=

9– ad 3a–+ 0=

d 3– 3a+=

9– 3a– 3a
2

3a–+ 0=

a
2

2a– 3– 0=

a 3–( ) a 1+( ) 0=

a 3= a 1–=

a 3=

b 3=

c 3–=

d 6=

e 9–=

x
5

p
2
x k–±

s0 s1 s2 …, , , sisj si j+ si j–+=

i j≥ si si 12+=

s0 s1 s2 0> > >

s0 2= s1 3= s2 1=

s1 s0⋅ s1 s1+ 2s1= =

s0 2=

s1 s1⋅ s2 s0+=

s2 s1
2

s0– s1
2

2–= =

s2 s1⋅ s3 s1+=



u-
Since s1 must be strictly between 0 and 2, all but 1 and  are eliminated.

First, try .  yields , a contradiction.  So .

Second, try .  yields  or .  It works!

So, , , and .

Editor’s Comment: Once again, we are most grateful to Dr. Erin Schram of NSA for this intrig
ing problem.  An indirect, but interesting solution begins with the observation that

 and modeling the sequence as  for

some .

s1
2

2–[ ] s1⋅ s3 s1+=

s3 s1
3

3s1–=

s3 s3⋅ s6 s0+=

s1
3

3s1–[ ]
2

s6 2+=

s1
6

6s1
4

– 9s1
2

+ s6 2+=

s6 s1
6

6s1
4

– 9s1
2

2–+=

s6 s6⋅ s12 s0+ s0 s0+ 4= = =

s1
6

6s1
4

– 9s1
2

2–+[ ]
2

4=

s1 3– 3 2– 2 1– 1 0, , , , , ,{ }∈

3

s1 1= s1 s1⋅ s2 s0+= s2 1–= s1 1≠

s1 3= s1 s1⋅ s2 s0+= 3 s2 2+= s2 1=

s0 2= s1 3= s2 1=

α βcoscos
1
2
--- α β+( )cos

1
2
--- α β–( )cos+= si 2 iθ( )cos=

θ



t

a

5/1/12. In the octahedron shown on the right, the base
and top faces are equilateral triangles with sides
measuring 9 and 5 units, and the lateral edges are all
of length 6 units. Determine the height of the octa-
hedron; i.e., the distance between the base and the
top face.

Solution 1 by Anna Maltseva (12/MI):
By symmetry, the top face is parallel to the base, and the
line connecting the centers of the triangles of the top
face and the base is perpendicular to both the top face
and the base.

The top view of the octahedron looks like the figure at left. Le
O1 denote the center of the top face,O2 denote the center of the
base,A denote a vertex of the top face, andB denote the mid-
point of the corresponding side of the base. Imagine dropping
line fromA perpendicular to the base and letK denote the point
where it intersects the plane of the base. Then triangleABKwill
be a right triangle andAK will be the height of the octahedron.

So

 so .

Therefore,

.

.

9
9 9

66

6 6

6 6

55

5

O1

A
B

AB
2

AK
2

BK
2

+ AK
2

O2B O1A–( )
2

+= =

A

B4.5

4.5

3
-------

30°

O2

A 5

3
-------

2.5

6
2

AB
2

4.5( )2
+= AB

2
15.75=

15.75 AK
2 4.5

3
------- 5

3
-------– 

  2
+=

63
4
------ 1

12
------– AK

2
=

AK
188
12
--------- 47

3
------ 141

3
-------------= = =



or-
por-
Solution 2 by Alexander Power (11/IA):
Let the equilateral triangle with side 5 have verticesA, B, andC, and let the equilateral triangle
with side 9 have verticesD, E, andF, with sides of the octahedronAD, BD, BE, CE, CF, AF.
Then, the height of the octahedron is the same as the height of tetrahedronABCDand the same as
the height of tetrahedronCDEF.  We know the length of all the sides exceptCD.  A formula for

the volume of a tetrahedronABCD is , where T is the determinant of the  matrix

Plugging in values of the two tetrahedra, we get

and

as the determinants of the two tetrahedra, withT1 as the determinant of tetrahedronABCDandT2
the determinant ofCDEF.  Since the tetrahedra have the same height, their volumes are prop
tional to the areas of their bases (by Cavalieri’s Principle).  The areas of their bases are pro
tional to a square of a side.  Thus

.

This means that .  Thus

or

T
288
--------- 5 5×

0 1 1 1 1

1 0 AB
2

AC
2

AD
2

1 AB
2

0 BC
2

BD
2

1 AC
2

BC
2

0 CD
2

1 AD
2

BD
2

CD
2

0

T1 det

0 1 1 1 1

1 0 25 25 36

1 25 0 25 36

1 25 25 0 x
2

1 36 36 x
2

0

50x
4

– 4850x
2

6050–+= =

T2 det

0 1 1 1 1

1 0 81 81 36

1 81 0 81 36

1 81 81 0 x
2

1 36 36 x
2

0

162x
4

– 24786x
2

328050–+= =

81
T1

288
--------- 25

T2

288
---------=

T2
25
81
------ 

  2
T1=

50x
4

– 4850x
2

6050–+( ) 162x
4

– 24786x
2

328050–+( ) 25
81
------ 

 =



andx2 is 81 or -9, but -9 is extraneous.  This means that .  Thus,T2 is

and the volume of tetrahedronCDEF is .  Since the base has area , the height is

 .

Editor’s Comment: Dr. Berzsenyi based this problem on a recent article inMathematics Maga-
zine (vol. 72, no. 4, pp.277-286).

2800–
81

---------------x
4 22400

9
---------------x

2
25200+ + 0=

CD 9=

T2

0 1 1 1 1

1 0 81 81 36

1 81 0 81 36

1 81 81 0 81

1 36 36 81 0

616734= =

27
4
------ 47

81 3
4

-------------

47
3
------ 3.958∼
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